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Abstract
Using a simple transfer matrix approach we have derived very long series
expansions for the perimeter generating function of punctured staircase
polygons (staircase polygons with a single internal staircase hole). We find that
all the terms in the generating function can be reproduced from a linear Fuchsian
differential equation of order 8. We perform an analysis of the properties of
the differential equation.

PACS numbers: 05.50.+q, 05.70.Jk, 02.10.Ox

1. Introduction

A well-known long standing problem in combinatorics and statistical mechanics is to find
the generating function for self-avoiding polygons (or walks) on a two-dimensional lattice,
enumerated by perimeter. Recently, we have gained a greater understanding of the difficulty
of this problem, as Rechnitzer [1] has proved that the (anisotropic) generating function for
square lattice self-avoiding polygons is not differentiably finite [2], as had been conjectured
earlier on numerical grounds [3]. That is to say, it cannot be expressed as the solution of an
ordinary differential equation with polynomial coefficients. There are many simplifications of
this problem that are solvable [4], but all the simpler models impose an effective directedness
or equivalent constraint that reduces the problem, in essence, to a one-dimensional problem.

A staircase polygon can be viewed as the intersection of two directed walks starting at
the origin, moving only to the right or up and terminating once the walks join at a vertex. It is
well known that the generating function for staircase polygons is

P(x) = 1 − 2x − √
1 − 4x

2
∝ (1 − µx)2−α,

where the connective constant µ = 4 and the critical exponent α = 3/2. Punctured staircase
polygons [5] are staircase polygons with internal holes which are also staircase polygons

0305-4470/06/153871+12$30.00 © 2006 IOP Publishing Ltd Printed in the UK 3871

http://dx.doi.org/10.1088/0305-4470/39/15/002
mailto:tonyg@ms.unimelb.edu.au
mailto:I.Jensen@ms.unimelb.edu.au
http://stacks.iop.org/JPhysA/39/3871


3872 A J Guttmann and I Jensen

Staircase Punctured staircase

Figure 1. Examples of the types of polygons studied in this paper.

(the polygons are mutually- as well as self-avoiding). In [5], it was proved that the connective
constant µ of k-punctured polygons (polygons with k holes) is the same as the connective
constant of unpunctured polygons. Numerical evidence clearly indicated that the critical
exponent α increased by 3/2 per puncture. The closely related model of punctured discs was
considered in [6]. Punctured discs are counted by area and in this case it was proved that the
critical exponent increases by 1 per puncture. Here we will study only the case with a single
hole (see figure 1), and we will refer to these objects as punctured staircase polygons. The
perimeter length of staircase polygons is even and thus the total perimeter (the outer perimeter
plus the perimeter of the hole) is also even. We denote by pn the number of punctured staircase
polygons of perimeter 2n. The results of [5] imply that the half-perimeter generating function
has a simple pole at x = xc = 1/µ = 1/4, though the analysis in [5] clearly indicated that the
critical behaviour is more complicated than a simple algebraic singularity.

Recently, we found that the perimeter generating function of three-choice polygons can be
expressed as the solution of an eighth-order linear ODE [7]. Similarly, in this paper we report
on work which has led to an exact Fuchsian linear differential equation of order 8 apparently
satisfied by the perimeter generating function, P(x) = ∑

n�0 pnx
n, for punctured staircase

polygons (that is, P(x) is one of the solutions of the ODE, expanded around the origin). The
first few terms in the generating function are

P(x) = x8 + 12x9 + 94x10 + 604x11 + 3463x12 + · · · .
Our analysis of the ODE shows that the dominant singular behaviour is

P(x) ∼ A(x)

(1 − 4x)
+

B(x) + C(x) log(1 − 4x)√
1 − 4x

+ D(x)(1 + 4x)13/2. (1)

So in the notation used above, the generating function has a dominant singularity at
x = xc = 1/µ with exponent α = 3. This result confirms exactly the conjecture for the
critical exponent [5] in the case of a single puncture and the quite complicated corrections at
the critical point explain why the analysis in [5], based on a relatively short series, was so
difficult.

It is also possible to express the generating function P(x) as a sum of 4 × 4 Gessel–
Viennot determinants [8]. This is clear from figure 2, where the enumeration of the lattice
paths between the dotted lines is just the classical problem of four vicious walkers, and these
must be joined to two vicious walkers to the left, and to two vicious walkers to the right.
Then one must sum over different possible geometries. However, the fact that the generating
function is so expressible implies that it is differentiably finite [9].

Unfortunately we cannot readily bound the size of the underlying ODE, otherwise we
could use this observation to provide a proof of our results. As it is, we originally generated the
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Figure 2. The decomposition of a punctured staircase polygon into a sequence of 2–4–2 vicious
walkers, each expressible as a Gessel–Viennot determinant.

counts of punctured staircase polygons up to perimeter 502 (251 coefficients), and found what
we believe to be the underlying ODE experimentally from the first 195 coefficients. The ODE
then correctly predicts the next 56 coefficients. While the possibility that the underlying ODE
is not the correct one is extraordinarily small, our procedure still does not constitute a proof
of course. We have since extended the count beyond perimeter 800 and still all coefficients
are predicted by our ODE.

2. Computer enumeration

The algorithm we use to count the number of punctured staircase polygons is a modified version
of the algorithm of Conway et al [10] for the enumeration of imperfect staircase polygons.
The two problems are very similar and consequently there are only minor differences between
the algorithms. A detailed description of the algorithm we used to count imperfect staircase
polygons can be found in [7]. The algorithm is based on transfer matrix techniques. This
entails bisecting the polygons by a line (as illustrated in figure 1) and enumerating the number
of polygons by moving the line ‘forward’ one step at a time. Punctured staircase polygons start
out as ordinary staircase polygons and the line bisects the polygon at two edges. Then at some
vertex two additional directed walks (sharing the same starting point) are inserted between the
two original walks. The line will thus intersect these polygon configurations at four edges (see
figure 1). The only difference between the algorithm in [7] and the one used for this paper is
in how the four directed walks intersected by the line are connected in order to produce a valid
polygon. To produce a punctured staircase polygon we first connect the two innermost walks
and then the two outermost walks are connected. Imperfect staircase polygons on the other
hand are produced by connecting the first walk with the second walk and the third walk with
the fourth walk. The updating rules used to count imperfect staircase polygons are given in [7]
and are easily amended to count punctured staircase polygons bearing in mind the different
‘closing’ criteria outlined above.

We calculated the number of punctured staircase polygons up to perimeter 502. The integer
coefficients become very large so the calculation was performed using modular arithmetic
[11]. This involves performing the calculation modulo various prime numbers pi and then



3874 A J Guttmann and I Jensen

reconstructing the full integer coefficients at the end. We used primes of the form pi = 230−ri ,
where ri are small positive integers, less than 1000, chosen so that pi is prime, and pi �= pj

unless i = j. 17 primes were needed to represent the coefficients correctly. The calculation
for each prime used about 200 MB of memory and about 8 min of CPU time on a 2.8 GHz
Xeon processor. Naturally, we could have carried the calculation much further (and we have
since done this) but as we shall demonstrate in the next section this number of coefficients
more than sufficed to identify an exact differential equation satisfied by P(x).

3. The Fuchsian differential equations

In recent papers, Zenine et al [12–14] obtained the linear differential equations whose solutions
give the 3- and 4-particle contributions χ(3) and χ(4) to the Ising model susceptibility. In [7],
we used their method to find a linear differential equation for three-choice polygons and in
this paper we extend this work further to find a linear differential equation which has as a
solution the generating function P(x) for punctured staircase polygons. We briefly outline
the method here. Starting from a (long) series expansion for the function P(x) we look for a
linear differential equation of order m of the form

m∑
k=0

Pk(x)
dk

dxk
P(x) = 0, (2)

such that P(x) is a solution to this homogeneous linear differential equation, where the
Pk(x) are polynomials. In order to make it as simple as possible we start by searching for a
Fuchsian [15] equation. Such equations have only regular singular points. There are several
reasons for searching for a Fuchsian equation, rather than a more general D-finite equation.
Computationally the Fuchsian assumption simplifies the search for a solution. From the general
theory of Fuchsian [15] equations it follows that the degree of Pk(x) is at most n − m + k

where n is the degree of Pm(x). To simplify matters further (reduce the order of the unknown
polynomials) it is advantageous to explicitly assume that the origin and x = xc = 1/4 are
regular singular points and set Pk(x) = Qk(x)S(x)k , where S(x) = x(1 − 4x). Thus when
searching for a solution of Fuchsian type there are only two parameters, namely the order m
of the differential equation and the degree qm of the polynomial Qm(x). One may also argue,
less precisely, that for ‘sensible’ combinatorial models one would expect Fuchsian equations,
as irregular singular points are characterized by explosive, super-exponential behaviour. Such
behaviour is not normally characteristic of combinatorial problems arising from statistical
mechanics. The point at infinity may be an exception to this somewhat imprecise observation.

We then search systematically for solutions by varying m and qm. In this way we first found
a solution with m = 10 and qm = 11, which required the determination of L = 195 unknown
coefficients. We have 251 terms in the half-perimeter series and thus have 56 additional terms
with which to check the correctness of our solution. Having found this solution we then turned
the ODE into a recurrence relation and used this to generate more series terms in order to
search for a lower order Fuchsian equation. The lowest order equation we found was eighth
order and with qm = 27, which requires the determination of L = 294 unknown coefficients.
Thus from our original 251 term series we could not have found this eighth-order solution
since we did not have enough terms to determine all the unknown coefficients in the ODE.
This raises the question as to whether perhaps there is an ODE of lower order than 8 that
generates the coefficients? The short answer to this is no. Further study of our differential
operator revealed that it can be factorized. In fact we found a factorization into three first-order
linear operators, a second-order and a third-order. The generating function is a solution of the
eighth-order operator, not of any of the smaller factors.
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Table 1. Critical exponents for the regular singular points of the Fuchsian differential equation
satisfied by P(x).

Singularity Exponents

x = 0 −1, 0, 0, 0, 1, 2, 3, 8
x = 1/4 −1,−1/2,−1/2, 1/2, 1, 3/2, 2, 3
x = −1/4 0, 1, 2, 3, 4, 5, 6, 13/2
x = ±i/2 0, 1, 2, 3, 4, 5, 6, 13/2
1 + x + 7x2 = 0 0, 1, 2, 2, 3, 4, 5, 6
1/x = 0 −2,−3/2,−1, −1,−1/2, 1/2, 3/2, 5/2
Q8(x) = 0 0, 1, 2, 3, 4, 5, 6, 8

The (half)-perimeter generating function P(x) for punctured staircase polygons is a
solution to the linear differential equation of order 8

8∑
k=0

Pn(x)
dk

dxk
P(x) = 0 (3)

with
P8(x) = x4(1 − 4x)8(1 + 4x)(1 + 4x2)(1 + x + 7x2)Q8(x),

P7(x) = x3(1 − 4x)7Q7(x), P6(x) = 2x2(1 − 4x)6Q6(x),

P5(x) = 6x(1 − 4x)5Q5(x), P4(x) = 120(1 − 4x)4Q4(x),

P3(x) = 120(1 − 4x)3Q3(x), P2(x) = 720(1 − 4x)2Q2(x),

P1(x) = 720(1 − 4x)Q1(x), P0(x) = 2880Q0(x),

(4)

where Q8(x),Q7(x), . . . ,Q0(x), are polynomials of degrees 22, 28, 29, 30, 31, 31, 31, 31
and 31, respectively. The polynomials are listed in the appendix.

The singular points of the differential equation are given by the roots of P8(x). One
can easily check that all the singularities (including x = ∞) are regular singular points so
equation (3) is indeed of the Fuchsian type. It is thus possible using the method of Frobenius
to obtain from the indicial equation the critical exponents at the singular points. These are
listed in table 1.

We shall now consider the local solutions to the differential equation around each
singularity. Recall that in general it is known [15, 16] that if the indicial equation yields k
critical exponents which differ by an integer, then the local solutions may contain logarithmic
terms up to logk−1. However, for the Fuchsian equation (3) only multiple roots of the indicial
equation give rise to logarithmic terms in the local solution around a given singularity, so that
a root of multiplicity k gives rise to logarithmic terms up to logk−1. In particular, this means
that near any of the 22 roots of Q8(x) the local solutions have no logarithmic terms and the
solutions are thus analytic since all the exponents are positive integers. The roots of Q8 are
thus apparent singularities [15, 16] of the Fuchsian equation (3). We briefly mention that as
in our earlier study [7] we can find a solution of order 14 of the same form as (3) but with
Q14(x) being just a constant. So at this order none of the roots of Q8(x) appear. Clearly any
real singularity of the system cannot be made to vanish and so we conclude that the 22 roots
of Q8 must indeed be apparent singularities.

Assuming that only repeated roots give rise to log terms, and thus that a sequence
of positive integers gives rise to analytic terms, then near the physical critical point
x = xc = 1/4 = 1/µ we expect the singular behaviour

P(x) ∼ A(x)

(1 − 4x)
+

B(x) + C(x) log(1 − 4x)√
1 − 4x

, (5)
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where A(x), B(x) and C(x) are analytic in a neighbourhood of xc. Note that the terms
associated with the exponents 1/2 and 3/2 become part of the analytic correction to the
(1 − 4x)−1/2 term. Near the singularity on the negative x-axis, x = x− = −1/4 we expect the
singular behaviour

P(x) ∼ D(x)(1 + 4x)13/2, (6)

where again D(x) is analytic near x−. We expect similar behaviour near the pair of
singularities x = ±i/2, and finally at the roots of 1 + x + 7x2 we expect the behaviour
E(x)(1 + x + 7x2)2 log(1 + x + 7x2).

We can simplify the eighth-order differential operator found above. We first found three
very simple solutions of the ODE, each corresponding to an order one differential operator,

F1(x) = 1 − 4x, F2(x) = 1 − 4x − 4x3

1 − 4x
,

and

F3(x) = 9 − 34x + 14x2

√
1 − 4x

.

The existence of these three linearly independent solutions implies that we can find three
first-order operators, which we denote by L

(1)
i , with i = 1, 2, 3, such that the original

eighth-order differential operator can be written as L(8) = L(5)L
(1)
1 L

(1)
2 L

(1)
3 , where L(5) is a

fifth-order differential operator. We further found that this latter operator is decomposable as
L(5) = L(3)L(2). This then allows one, in principle, to write down the form of the 8 × 8 matrix
representing the differential Galois group of L(8), in an appropriate global solution basis. To
determine the asymptotics one would need to calculate non-local connection matrices between
solutions at different points. This is a huge task for such a large differential operator. Instead,
we have developed a numerical technique that avoids all these difficulties, which we describe
below.

To standardize our asymptotic analysis, we assume that the critical point is at 1. The growth
constant of punctured staircase polygons is 4, so we normalize the series by considering the
new series with coefficients rn, defined by rn = pn+8/4n. Thus the generating function we
study is R(y) = ∑

n�0 rny
n = 1 + 3y + 5.875y2 + · · ·. Using the recurrence relations for pn

(derived from the ODE) it is easy and fast to generate many more terms rn. We generated the
first 100 000 terms and saved them as floats with 500 digit accuracy (this calculation took less
than 15 min). From equations (5) and (6) it follows that the asymptotic form of the coefficients
is

[yn]R(y) = rn =
∑
i�0

(
ãi

ni
+

b̃i log n + c̃i

ni+1/2
+(−1)n

(
d̃ i

n15/2+i

))
+ O(λ−n). (7)

Any contributions from the other singularities are exponentially suppressed since their norm
(in the scaled variable y = x/4) exceeds 1.

Estimates for the amplitudes were obtained by fitting rn to the form given above using
an increasing number of amplitudes. ‘Experimentally’ we find we need about the same total
number of terms at xc and −xc. So in the fits we used the terms with amplitudes ãi , b̃i and
c̃i , i = 0, . . . , K and d̃ i , i = 0, . . . , 3K . Going only to K with the d̃ i amplitudes results in
much poorer convergence and going beyond 3K leads to no improvement. For a given K we
thus have to estimate 6K + 4 unknown amplitudes. So we use the last 6K + 4 terms rn with n
ranging from 100 000 to 100 000 − 6K − 3 and solve the resulting 6K + 4 system of linear
equations. We can also add extra terms to the asymptotic form and check what happens to
the amplitudes of the new terms. If these amplitudes are very small it is highly likely that the
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terms are not truly present (if the calculation could be done exactly these amplitudes would
be zero).

Doing this we found that all the amplitudes ãi appear to be zero except that ã0 = 1024,
e.g., with K = 20 we find that the estimates for the amplitudes ã1 < 10−70, ã2 < 10−60,
ã3 < 10−50, etc. So in all likelihood the amplitudes ãi = 0 for i > 0. This then leads us to
the refined asymptotic form

[yn]R(y) = rn = 1024


1 +

1√
n

∑
i�0

(
bi log n + ci

ni
+ (−1)n

(
di

n7+i

))
 + O(λ−n). (8)

In fits to this form we then used the terms with amplitudes bi , and ci, i = 0, . . . , K and
di, i = 0, . . . , 2K . For a given K we thus have to estimate 4K + 3 unknown amplitudes.
We find that the amplitude estimates are fairly accurate up to around 2K/3. We observed
this by doing the calculation with K = 30 and K = 40 and then looking at the difference
in the amplitude estimates. For b0 and c0 the difference is less than 10−120, while for d0 the
difference is less than 10−116. Each time we increase the amplitude index by 1 we lose around
six significant digits in accuracy. With i = 18 the differences are respectively around 10−14

and 10−11.
From our very long series it is possible to obtain accurate numerical estimates of many

of the amplitudes bi, ci and di , with a precision of more than 100 digits for the dominant
amplitudes, shrinking to around 10 digits for the case when i = 18 (actually we could
probably have pushed this further but there would be little point). In this way we found
that b0 = − 6

√
3

π3/2 , b1 = 305
4
√

3π3/2 , b2 = 86 123
192

√
3π3/2 , c0 = 1.552 103 400 488 791 053 74 . . . and

d0 = 48
π3/2 , d1 = − 2610

π3/2 , d2 = 640 815
8π3/2 , d3 = − 116 785 575

64π3/2 , d4 = 70 325 480 841
2048π3/2 , though we have not

been able to identify c0. These amplitudes are known to at least 100 digits accuracy.
The excellent convergence is solid evidence (though naturally not a proof) that the

assumptions leading to equation (7) are correct. Further evidence was obtained as follows:
we have already argued that the terms of the form 1/ni, i > 0 are absent. We found similar
results if we added terms like log n/ni, log2 n/ni/2 or additional log n terms at y = −1. So
this fitting procedure provides convincing evidence that the asymptotic form (8), and thus the
assumptions leading to this formula, are correct.

4. Conclusion and outlook

We have developed an improved algorithm for enumerating punctured staircase polygons.
The extended series, coupled with a search program that assumes the solution is a Fuchsian
ODE, enabled us to discover the underlying ODE, which was of tenth order. We did this
without using 56 of the coefficients that we had generated. That is to say, 56 of the known
coefficients were unused, and so their values provided a check on the solution. This leads us to
believe that we have found the correct ODE, as it reproduces the known, unused coefficients.
Subsequently, we have extended this check to more than 200 unused coefficients. Further
refinement allowed us to find an eighth-order ODE.

A numerical technique we have developed specifically for such problems then allowed
us to find accurate numerical estimates for the amplitudes of the first several terms in the
asymptotic form of the coefficients, and then to conjecture their exact value.

We have also initiated an investigation of the area generating function. We expect this to
involve q-series, and thus far our investigations only lead us to believe that the area generating
function A(q) is of the form

A(q) = (G(q) + H(q)
√

1 − q/η)/[J0(1, 1, q)2],
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where J0(x, y, q) is a q-generalization of the Bessel function, and occurs, for example, in the
solution of the problem of staircase polygons enumerated by perimeter [4]. Here q = η is
the first zero of J0(1, 1, q), and G and H are regular in the neighbourhood of q = η. The
coefficients thus behave asymptotically as

an = [qn]A(q) ∼ const.η−nn.

In a subsequent publication we propose to investigate the area generating function more fully,
and hopefully obtain more insight into the properties of the ODE we have found for the
perimeter generating function.

Furthermore, in work with Richard [17] we have conjectured the scaling function for
punctured polygons with an arbitrary number of punctures. We briefly review the properties
of the two-variable area-perimeter generating function for staircase polygons. Of special
interest is the point (xc, 1) where two lines of singularities meet. The behaviour of the singular
part of the generating function about (xc, 1) is expected to take the special form

P(x, q) ∼ P (reg)(x, q) + (1 − q)θF ((xc − x)(1 − q)−φ), (x, q) ↗,

where F(s) is a scaling function of combined argument s = (xc − x)(1 − q)−φ , commonly
assumed to be regular at the origin, and θ = 1/3 and φ = 2/3 are critical exponents. For
staircase polygons, we have

F(s) = 1

8

d

ds
log Ai((4

√
2)

2
3 s).

In [17] we assumed that the limit distribution by area of staircase polygons with r punctures
(of arbitrary size) is that of staircase polygons with r holes of unit area. From this and
knowledge of F(s) we then obtained exact predictions for r punctured staircase polygons
by taking the rth derivative wrt q of P(x, q). We then study the area–moment generating
function, Pk(x) = ∑

m,n nkpm,nx
m, where pm,n is the number of polygons with perimeter m

and area n. In particular, we find that the leading amplitudes A
(r)
k of the perimeter generating

function of the kth area–moment are given by

A
(r)
k = (k + r)!xr

cfk+r

r!xγk+r
c 	(γk+r )

.

Here fk+r are amplitudes occurring in the asymptotic expansion of P(x, q) (these are known
exactly for punctured staircase polygons) while γk+r = 3(k + r)/2 − 1/2 are the critical
exponents of the kth area-moment of r punctured polygons. These predictions have been
confirmed for once punctured staircase polygons to a very high level of accuracy for moments
up to k = 10. The numerical analysis of the area–moments relied crucially on our knowledge
of the singularity structure of the perimeter generating function as detailed in this paper.

E-mail or WWW retrieval of series

The series for the generating functions studied in this paper can be obtained via e-mail by
sending a request to I.Jensen@ms.unimelb.edu.au or via the world wide web on the URL
http://www.ms.unimelb.edu.au/˜iwan/ by following the instructions.
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Appendix. Polynomials Qn(x) for punctured staircase polygons

Q8(x) = −90 720 + 1255 590x − 9538 200x2 + 20 394 828x3 − 79 106 610x4

+ 1223 958 687x5 − 2943 232 056x6 + 17 470 357 067x7 − 189 472 079 743x8

+ 579 172 715 823x9 − 1746 461 498 616x10 + 8400 325 324 610x11

− 1591 154 327 260x12 − 111 431 714 394 808x13 + 315 517 552 430 480x14

− 106 489 387 477 312x15 − 938 487 878 760 384x16

+ 1628 517 397 980 288x17 − 2394 531 569 420 032x18

+ 2966 185 168 205 312x19 − 170 238 270 849 024x20

− 699 187 344 629 760x21 + 295 462 090 506 240x22

Q7(x) = −1360 800 + 23 565 780x − 167 569 290x2 + 478 254 996x3 + 641 052 858x4

+ 14 810 951 034x5 − 47 034 372 339x6 − 166 933 659 974x7

− 2552 936 187 594x8 + 6447 911 404 224x9 + 14 253 364 474 478x10

+ 86 598 771 199 392x11 + 362 131 239 586 500x12 − 3860 712 252 484 892x13

+ 8993 313 236 994 576x14 − 31 235 880 957 264 960x15

+ 46 429 326 957 124 912x16 + 155 905 775 680 790 304x17

− 807 736 441 103 822 976x18 + 1835 072 857 042 276 096x19

− 1278 888 252 797 142 528x20 − 293 981 468 599 460 352x21

+ 14 541 716 059 525 437 440x22 − 26 481 815 895 022 608 384x23

+ 22 483 566 008 412 450 816x24 − 35 911 819 535 956 066 304x25

+ 3639 680 241 277 796 352x26 + 7495 959 535 363 031 040x27

− 3507 725 938 490 081 280x28

Q6(x) = −1723 680 + 69 281 730x − 787 195 710x2 + 4886 678 970x3 − 10 726 639 974x4

+ 11 830 409 583x5 − 401 281 487 235x6 + 343 905 413 598x7

+ 1858 137 414 650x8 + 44 092 692 217 413x9 − 36 740 412 036 168x10

− 135 298 590 380 414x11 − 1279 093 006 602 396x12

− 10 004 750 418 032 976x13 + 61 536 871 579 988 144x14

− 216 281 351 081 049 504x15 + 1050 287 576 547 538 488x16

− 1795 967 175 346 626 976x17 − 2572 736 181 692 580 960x18

+ 18 017 037 664 470 796 032x19 − 45 232 775 265 352 713 472x20

+ 48 709 527 110 201 501 184x21 + 4770 083 118 869 915 136x22

− 322 327 838 255 331 590 144x23 + 541 571 044 899 035 842 560x24

− 511 926 023 257 614 434 304x25 + 716 375 351 150 156 644 352x26

− 69 659 801 950 830 723 072x27 − 136 551 990 333 116 252 160x28

+ 60 094 625 512 245 166 080x29

Q5(x) = 1965 600 − 6539 400x − 358 033 410x2 + 4831 433 820x3 − 30 915 098 190x4

+ 60 211 846 008x5 − 201 764 518 161x6 + 2531 858 233 470x7

+ 1380 416 576 424x8 − 20 212 314 275 250x9 − 61 506 470 769 366x10

− 477 804 842 150 324x11 + 608 746 761 166 938x12 + 483 723 642 457 152x13



3880 A J Guttmann and I Jensen

+ 60 127 368 616 743 592x14 − 185 780 400 624 937 008x15

+ 1165 835 175 099 337 288x16 − 7175 943 616 536 571 776x17

+ 13 745 698 284 061 066 112x18 + 4948 349 174 336 379 840x19

− 89 453 290 124 304 769 024x20 + 270 104 157 697 832 561 664x21

− 356 324 521 463 829 808 128x22 − 41 862 184 650 482 117 632x23

+ 1845 216 328 946 812 827 648x24 − 2906 213 125 616 330 383 360x25

+ 2943 265 956 913 569 742 848x26 − 3723 507 915 329 643 413 504x27

+ 405 249 143 061 461 336 064x28 + 618 215 144 006 850 969 600x29

− 261 821 958 729 561 538 560x30

Q4(x) = 241 920 − 8017 380x + 88 351 704x2 − 590 355 612x3 + 2409 400 818x4

− 8457 027 588x5 + 71 232 186 468x6 − 288 557 341 128x7

+ 524 905 454 055x8 − 5046 532 132 734x9 + 28 114 089 314 043x10

− 164 508 486 596 467x11 + 869 331 744 354 740x12

− 2401 501 341 116 904x13 + 12 275 987 679 372 578x14

− 50 846 889 626 226 508x15 + 46 258 831 828 476 364x16

− 147 764 159 295 056 304x17 + 1375 769 527 659 995 736x18

− 2625 251 094 439 093 408x19 − 765 792 895 039 661 984x20

+ 22 951 686 058 011 476 032x21 − 85 054 223 999 548 283 904x22

+ 126 294 091 912 315 062 016x23 + 19 381 267 403 906 712 064x24

− 566 287 434 634 380 073 984x25 + 849 895 463 062 111 623 168x26

− 892 557 255 237 919 469 568x27 + 1043 719 341 871 898 804 224x28

− 142 670 999 896 790 335 488x29 − 140 350 544 778 022 354 944x30

+ 59 234 239 904 690 995 200x31

Q3(x) = −4596 480 + 112 443 660x − 1327 020 156x2 + 11 580 963 786x3

− 76 436 209 584x4 + 426 159 579 924x5 − 2350 462 539 072x6

+ 11 395 385 983 233x7 − 44 136 036 344 190x8 + 145 288 111 685 523x9

− 559 910 802 106 640x10 + 3013 037 795 053 530x11

− 13 499 762 948 930 634x12 + 50 096 716 464 628 528x13

− 217 987 216 302 493 908x14 + 853 439 326 193 439 492x15

− 2363 497 210 984 795 232x16 + 5096 223 845 046 539 304x17

− 8508 469 151 526 998 016x18 + 9581 930 085 552 894 304x19

− 10 241 374 665 198 721 536x20 − 12 641 088 914 996 048 640x21

+ 118 651 673 978 481 267 200x22 − 208 768 950 136 609 496 064x23

− 15 400 291 418 459 486 208x24 + 814 317 146 169 694 152 704x25

− 1202 858 442 211 165 741 056x26 + 1271 933 402 411 862 171 648x27

− 1406 355 411 740 766 470 144x28 + 251 165 051 564 655 771 648x29

+ 137 326 949 251 639 934 976x30 − 61 285 928 661 166 325 760x31

Q2(x) = 1209 600 − 10 784 340x + 25 225 200x2 − 192 390 408x3 + 1497 608 946x4

− 3085 618 896x5 + 55 270 573 062x6 − 674 664 767 886x7
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+ 1891 951 243 653x8 + 6937 954 472 784x9 − 19 443 421 819 978x10

− 252 270 853 719 194x11 + 1421 753 108 033 868x12

− 2280 488 850 916 676x13 − 1040 351 739 238 056x14

− 1519 080 794 794 788x15 + 54 144 924 827 952 720x16

− 143 110 935 850 986 376x17 − 63 031 554 528 921 744x18

+ 1125 126 938 486 807 936x19 − 2675 665 192 031 509 504x20

+ 3361 130 538 055 156 224x21 − 2669 659 667 713 374 208x22

+ 1996 890 960 732 463 104x23 − 4866 848 788 151 009 280x24

+ 3555 378 162 093 901 824x25 + 3193 922 372 633 202 688x26

− 2642 707 373 157 531 648x27 + 2132 642 211 038 560 256x28

− 3311 881 541 411 143 680x29 + 1596 569 887 904 366 592x30

− 264 734 033 093 591 040x31

Q1(x) = −725 760 + 19 969 740x − 254 689 092x2 + 2329 185 726x3 − 17 948 325 636x4

+ 118 028 863 386x5 − 679 983 561 900x6 + 3637 871 524 611x7

− 17 150 360 490 738x8 + 62 088 405 193 554x9

− 183 555 964 459 890x10 + 747 009 873 725 220x11

− 4106 684 548 673 028x12 + 18 540 613 780 587 884x13

− 67 936 944 600 058 776x14 + 247 341 581 626 824 360x15

− 939 866 071 520 217 104x16 + 3216 462 341 735 279 616x17

− 8789 133 587 934 808 704x18 + 17 976 423 995 943 224 576x19

− 26 625 353 996 773 725 696x20 + 29 354 499 014 436 664 320x21

− 26 197 184 327 864 145 920x22 + 20 118 012 206 750 361 600x23

− 11 595 016 904 008 224 768x24 − 12 803 308 242 930 466 816x25

+ 49 275 320 633 035 751 424x26 − 49 679 788 190 366 564 352x27

+ 31 169 615 491 025 600 512x28 − 29 010 025 645 678 264 320x29

+ 12 772 559 103 234 932 736x30 − 2117 872 264 748 728 320x31

Q0(x) = Q1(x).
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